

The Cyclisation of a Nitramine, Formation of 3-Nitropyridine from 5-Nitraminopenta-2,4-dienal.

Jan M. Bakke,* Eli Ranes and Jaroslav Riha

Organic Chemistry Laboratories, Norwegian University of Science and Technology, N-7034 Trondheim, Norway.

Received 6 October 1997; revised 20 November 1997; accepted 21 November 1997

Abstract: On reaction of the sodium salt of 5-nitraminopenta-2,4-dienal (2) with sodium bisulfite at pH 4, 3-nitropyridine (10) was formed. Two reaction paths appeared possible for this reaction. From a ¹H NMR study of the reaction a route by the N-nitropyridinium ion 1 (Route A, Scheme 1) appeared likely. The results from the reaction of 1 under the same conditions supported this.

© 1998 Elsevier Science Ltd. All rights reserved.

We have reported the successful nitration of pyridine and substituted pyridines to the corresponding β -nitro compounds.¹ We have also reported that *N*-nitropyridinium nitrate (1), an intermediate in the formation of 3-nitropyridine from pyridine, under mild alkaline conditions formed the stable sodium salt of 5-nitraminopenta-2,4-dienal (2). Furthermore, 2 cyclised to 1 under acidic conditions and reacted with sodium bisulfite to give 3-nitropyridine (10).²

We have studied the mechanism of the nitration reaction of pyridine in some detail.³ As both compounds 1 and 2 gave 3-nitropyridine on reaction with sodium bisulfite, the reaction of 2 might have some bearing on the mechanism of the nitration reaction. We have therefore investigated the reaction of 2 further.

For the nitration of pyridine we have presented evidence which indicated that N-nitropyridinium nitrate, formed from pyridine and dinitrogen pentoxide (N_2O_5) reacted with sodium bisulfite to give 5 (characterised by 1H and ^{13}C NMR spectroscopy) which rearranged to give 6. Upon reaction with one more bisulfite ion, 9 was formed which then gave 3-nitropyridine (10, Route A, Scheme 1).

On reaction of the nitramine 2 with sodium bisulfite at pH 4, the hydroxysulfonates 3 and 8 were formed in a 5:1 ratio. These then reacted further to give 3-nitropyridine as the end product. In Scheme 1, two possible routes for the formation of 3-nitropyridine from 3/8 are depicted. One, Route A, is by a reversible formation of the N-nitropyridinium ion 1 from 3/8 and further reactions via 5, 6 and 9 to 3-nitropyridine.³ Route B is by a migration of the nitro group of 8 to give 7 and after ring closure of this, 6.

We have now identified both compounds 3 and 8 in the product mixture from 2 and sodium bisulfite⁴ and studied their reaction. This was followed by ¹H NMR. The ratio [3]/[8] was constant (5/1) during the reaction, indicating rapid equilibration. The concentrations of 3 and 8 decreased and that of 3-nitropyridine increased with time. For the tetrahydropyridine derivative 9 an increase in the concentration was first observed and then a decrease. Compounds 6 and 7 were not observed.

These results might be explained by both Route A and B in Scheme 1. However, one more intermediate was observed, N-nitro-1,4-dihydro-4-pyridinesulfonate (4). This was also formed in the nitration reaction of pyridine. ^{1,3} Its presence shows that the N-nitropyridinium ion 1 was formed from 3 and therefore indicate that Route A is possible for the reaction of 3. Furthermore, when N-nitropyridinium nitrate was reacted with sodium bisulfite at pH 4, 4, 9 and 10 were formed in the same ratios as those from the reaction of the open chain nitramine 3. These two points strongly suggest that compound 3 reacted via the N-nitropyridinium ion 1 as in Route A.

Acknowledgements. Support from the Norwegian Research Council and Norsk Hydro ASA is gratefully acknowledged. J. R. was supported by the Norwegian Governments exchange program for students from central Europe.

References and notes:

- 1. Bakke, J. M.; Hegbom, I. Acta Chem. Scand. 1994, 48, 181; Bakke, J. M.; Hegbom, I.; Øvreeide, E.; Aaby, K. Acta Chem. Scand. 1994, 48, 1001; Bakke, J. M.; Ranes, E. Synthesis 1997, 281.
- 2. Andersen, E.; Bakke, J. M.; Ranes, E.; Riha, J. Acta Chem. Scand. Accepted
- 3. Bakke, J. M. 72th Annual Meeting of the Chemical Society of Japan, Tokyo, March 1997. Bakke, J. M.; Ranes, E. J. Chem. Soc. Perkin Trans 2, 1997, 1919. Bakke, J. M.; Hegbom, I. J. Chem. Soc. Perkin Trans. 2, 1995, 1211.
- 4. NMR data for observed intermediates not reported before: For 3: ¹H NMR (400 MHz, ²H₂O, pH 4): δ 5.00 (1H, d, *J* 7.37 Hz, H¹), 5.86 (1H, dd, *J* 7.29, 15.43 Hz, H²), 6.22 (1H, dd, *J* 11.30, 13.75 Hz, H⁴), 6.59 (1H, dd, *J* 11.09, 15.19 Hz, H³), 7.46 (1H, d, *J* 13.85 Hz, H⁵). ¹³C NMR (100 MHz, ²H₂O, pH 3): δ 87.6 (C¹), 120.0 (C⁴), 128.8 (C²), 134.9 (C⁵), 136.2 (C³). For 8: ¹H NMR (400 MHz, ²H₂O, pH 4): δ 5.03 (1H, d, *J* 7.07 Hz, H¹), 5.76 (1H, dd, *J* 8.64, 11.24 Hz, H⁴), 5.86 (1H, dd, *J* 7.08, 15.33 Hz, H²), 6.93 (1H, dd, *J* 11.46, 15.38 Hz, H³), 7.10 (1H, d, *J* 8.62 Hz,

H⁵). ¹³C NMR (100 MHz, ${}^{2}\text{H}_{2}\text{O}$, pH 3): δ 87.9 (C¹), 118.2 (C⁴), 129.8 (C²), 131.4 (C⁵), 131.7 (C³),.